
matplotlib basics

matplotlib is the main plotting module to use with python

• typical import in a python program is:
• import matplotlib.pyplot as plt

• however sometimes we import other parts of matplotlib, e.g. to
create custom colormaps (see Thursday's lecture)
• matplotlib excels at 2-D plots. In my experience MATLAB is better,

and faster for fancy 3-D plots, like objects with lighting, but there may
be python modules I don't know about

my examples

• Examples are available on the parkermac GitHub repo "pmec" in the
folder ex_matplotlib
• plt_basics.py covers basic line plotting operations, and ways to make

multiple plots on a figure
• fields.py covers ways to plot 2-D fields using colors and contours

plt_basics.py

fields.py

plotting on a remote machine (like fjord)
• On your laptop you typically launch python as "ipython --pylab" which sets the

graphical backend. Then you can see plots on your screen, as well as saving them
as .png's. The typical laptop launch is:
ipython --pylab
import matplotlip.pyplot as plt

• On a remote machine you are working from the terminal, and so you can't see
plots, but you can still save .png's. On fjord the typical launch sequence is:
ipython
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt

• I build these into my plotting programs with an if-statement that uses some
knowledge of which machine I am working on. You could also make it a
command line argument using argparse.
• See the example "remote_printing.py" in pmec/ex_matplotlib

remote_printing.png on fjord
from remote_printing.py

Finding information
• The primary module is matplotlib.pyplot (plt), and typical objects you

create are figures (fig), axes (ax), colormaps or contours (cs), and text (h)
• Each of these has its own methods, and each method accepts some

required arguments (like x and y for a line plot) and some optional
"keyword arguments" or "kwargs" (like linewidth=4).
• It can sometimes (often!) be confusing which object and which method to

use to achieve a desired result.
• Sometimes there is an obvious hierarchy:

• plt has a method for making figures
• figures have a method for adding subplots (axes)
• axes have methods for actual plotting
• and when you do a plotting operation (e.g. add contours) it will return an object that

you can inspect to find applicable methods

Finding information, continued...
• To find out what methods can be used with an object, and what required and keyword arguments

are possible with a method there are several techniques.
• Say you have an axis object "ax":
• dir(ax) will give a list of all valid methods, e.g. plot
• help(ax.plot) gives, sometimes, a useful tutorial, although it can take some patience to read them
• ax.plot? will give more succinct information (often my favorite) such as this for the "linestyle"

kwarg:
• linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}

• which is saying that you could plot a dashed line using ax.plot(x,y, ls='--')
• ax.plot?? give a nicely colorized, but over-long version of everything you can do
• Sometimes you need to dig deeper, e.g. if you want to add some fancy text:
• help(ax.text) will give basic information, but will suggest you look at **kwargs :

`~matplotlib.text.Text` properties to find kwargs info
• to follow this suggestion use help(matplotlib.text.Text) or matplotlib.text.Text? which will also

show all valid kwargs, but to do this you first have to import matplotlib (not just
matplotlib.pyplot)

• NOTE: Text is the class for creating text object instances.

Resources

• https://matplotlib.org/ the home page
• https://matplotlib.org/users/index.html a Users Guide
• https://matplotlib.org/gallery/index.html an incredibly useful galley

of examples, including plots and the code that made them

https://matplotlib.org/
https://matplotlib.org/users/index.html
https://matplotlib.org/gallery/index.html

